Copied to
clipboard

G = C522Q8order 200 = 23·52

The semidirect product of C52 and Q8 acting via Q8/C2=C22

metabelian, supersoluble, monomial

Aliases: C522Q8, C51Dic10, C10.5D10, Dic5.1D5, C2.5D52, (C5×C10).5C22, C526C4.1C2, (C5×Dic5).2C2, SmallGroup(200,26)

Series: Derived Chief Lower central Upper central

C1C5×C10 — C522Q8
C1C5C52C5×C10C5×Dic5 — C522Q8
C52C5×C10 — C522Q8
C1C2

Generators and relations for C522Q8
 G = < a,b,c,d | a5=b5=c4=1, d2=c2, ab=ba, cac-1=a-1, ad=da, bc=cb, dbd-1=b-1, dcd-1=c-1 >

2C5
2C5
5C4
5C4
25C4
2C10
2C10
25Q8
5C20
5C20
5Dic5
5Dic5
10Dic5
10Dic5
5Dic10
5Dic10

Character table of C522Q8

 class 124A4B4C5A5B5C5D5E5F5G5H10A10B10C10D10E10F10G10H20A20B20C20D20E20F20G20H
 size 1110105022224444222244441010101010101010
ρ111111111111111111111111111111    trivial
ρ2111-1-11111111111111111111-1-1-1-11    linear of order 2
ρ311-11-11111111111111111-1-1-11111-1    linear of order 2
ρ411-1-111111111111111111-1-1-1-1-1-1-1-1    linear of order 2
ρ52220022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/222-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1+5/2-1-5/2-1-5/20000-1+5/2    orthogonal lifted from D5
ρ622020-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/2000-1-5/2-1+5/2-1+5/2-1-5/20    orthogonal lifted from D5
ρ7220-20-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/20001-5/21+5/21+5/21-5/20    orthogonal lifted from D10
ρ822-20022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/222-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/21+5/21-5/21-5/200001+5/2    orthogonal lifted from D10
ρ9220-20-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/2-1-5/2-1+5/222-1-5/2-1-5/2-1+5/2-1+5/20001+5/21-5/21-5/21+5/20    orthogonal lifted from D10
ρ1022020-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/2-1+5/2-1-5/222-1+5/2-1+5/2-1-5/2-1-5/2000-1+5/2-1-5/2-1-5/2-1+5/20    orthogonal lifted from D5
ρ112220022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/222-1+5/2-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1-5/2-1+5/2-1+5/20000-1-5/2    orthogonal lifted from D5
ρ1222-20022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/222-1-5/2-1+5/2-1-5/2-1+5/2-1-5/2-1+5/21-5/21+5/21+5/200001-5/2    orthogonal lifted from D10
ρ132-200022222222-2-2-2-2-2-2-2-200000000    symplectic lifted from Q8, Schur index 2
ρ142-2000-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/21-5/21+5/2-2-21-5/21-5/21+5/21+5/200043ζ5443ζ5ζ4ζ534ζ524ζ534ζ52ζ43ζ5443ζ50    symplectic lifted from Dic10, Schur index 2
ρ152-200022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-2-21+5/21-5/21+5/21-5/21+5/21-5/243ζ5443ζ54ζ534ζ52ζ4ζ534ζ520000ζ43ζ5443ζ5    symplectic lifted from Dic10, Schur index 2
ρ162-2000-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/21+5/21-5/2-2-21+5/21+5/21-5/21-5/20004ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ5ζ4ζ534ζ520    symplectic lifted from Dic10, Schur index 2
ρ172-2000-1+5/2-1-5/222-1+5/2-1-5/2-1-5/2-1+5/21-5/21+5/2-2-21-5/21-5/21+5/21+5/2000ζ43ζ5443ζ54ζ534ζ52ζ4ζ534ζ5243ζ5443ζ50    symplectic lifted from Dic10, Schur index 2
ρ182-200022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-2-21-5/21+5/21-5/21+5/21-5/21+5/24ζ534ζ52ζ43ζ5443ζ543ζ5443ζ50000ζ4ζ534ζ52    symplectic lifted from Dic10, Schur index 2
ρ192-200022-1+5/2-1-5/2-1-5/2-1-5/2-1+5/2-1+5/2-2-21-5/21+5/21-5/21+5/21-5/21+5/2ζ4ζ534ζ5243ζ5443ζ5ζ43ζ5443ζ500004ζ534ζ52    symplectic lifted from Dic10, Schur index 2
ρ202-2000-1-5/2-1+5/222-1-5/2-1+5/2-1+5/2-1-5/21+5/21-5/2-2-21+5/21+5/21-5/21-5/2000ζ4ζ534ζ52ζ43ζ5443ζ543ζ5443ζ54ζ534ζ520    symplectic lifted from Dic10, Schur index 2
ρ212-200022-1-5/2-1+5/2-1+5/2-1+5/2-1-5/2-1-5/2-2-21+5/21-5/21+5/21-5/21+5/21-5/2ζ43ζ5443ζ5ζ4ζ534ζ524ζ534ζ52000043ζ5443ζ5    symplectic lifted from Dic10, Schur index 2
ρ2244000-1+5-1-5-1+5-1-5-13+5/2-13-5/2-1+5-1-5-1+5-1-53-5/2-1-13+5/200000000    orthogonal lifted from D52
ρ2344000-1-5-1+5-1-5-1+5-13-5/2-13+5/2-1-5-1+5-1-5-1+53+5/2-1-13-5/200000000    orthogonal lifted from D52
ρ2444000-1+5-1-5-1-5-1+53-5/2-13+5/2-1-1+5-1-5-1-5-1+5-13-5/23+5/2-100000000    orthogonal lifted from D52
ρ2544000-1-5-1+5-1+5-1-53+5/2-13-5/2-1-1-5-1+5-1+5-1-5-13+5/23-5/2-100000000    orthogonal lifted from D52
ρ264-4000-1-5-1+5-1-5-1+5-13-5/2-13+5/21+51-51+51-5-3-5/211-3+5/200000000    symplectic faithful, Schur index 2
ρ274-4000-1+5-1-5-1-5-1+53-5/2-13+5/2-11-51+51+51-51-3+5/2-3-5/2100000000    symplectic faithful, Schur index 2
ρ284-4000-1+5-1-5-1+5-1-5-13+5/2-13-5/21-51+51-51+5-3+5/211-3-5/200000000    symplectic faithful, Schur index 2
ρ294-4000-1-5-1+5-1+5-1-53+5/2-13-5/2-11+51-51-51+51-3-5/2-3+5/2100000000    symplectic faithful, Schur index 2

Smallest permutation representation of C522Q8
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 3 5 2 4)(6 8 10 7 9)(11 14 12 15 13)(16 19 17 20 18)(21 24 22 25 23)(26 29 27 30 28)(31 33 35 32 34)(36 38 40 37 39)
(1 17 8 12)(2 16 9 11)(3 20 10 15)(4 19 6 14)(5 18 7 13)(21 34 26 39)(22 33 27 38)(23 32 28 37)(24 31 29 36)(25 35 30 40)
(1 28 8 23)(2 29 9 24)(3 30 10 25)(4 26 6 21)(5 27 7 22)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,35,32,34)(36,38,40,37,39), (1,17,8,12)(2,16,9,11)(3,20,10,15)(4,19,6,14)(5,18,7,13)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,35,30,40), (1,28,8,23)(2,29,9,24)(3,30,10,25)(4,26,6,21)(5,27,7,22)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,3,5,2,4)(6,8,10,7,9)(11,14,12,15,13)(16,19,17,20,18)(21,24,22,25,23)(26,29,27,30,28)(31,33,35,32,34)(36,38,40,37,39), (1,17,8,12)(2,16,9,11)(3,20,10,15)(4,19,6,14)(5,18,7,13)(21,34,26,39)(22,33,27,38)(23,32,28,37)(24,31,29,36)(25,35,30,40), (1,28,8,23)(2,29,9,24)(3,30,10,25)(4,26,6,21)(5,27,7,22)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,3,5,2,4),(6,8,10,7,9),(11,14,12,15,13),(16,19,17,20,18),(21,24,22,25,23),(26,29,27,30,28),(31,33,35,32,34),(36,38,40,37,39)], [(1,17,8,12),(2,16,9,11),(3,20,10,15),(4,19,6,14),(5,18,7,13),(21,34,26,39),(22,33,27,38),(23,32,28,37),(24,31,29,36),(25,35,30,40)], [(1,28,8,23),(2,29,9,24),(3,30,10,25),(4,26,6,21),(5,27,7,22),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35)]])

C522Q8 is a maximal subgroup of   C52⋊SD16  C52⋊Q16  D5×Dic10  Dic10⋊D5  D10.9D10  Dic5.D10  D10.4D10
C522Q8 is a maximal quotient of   Dic5⋊Dic5  C10.Dic10

Matrix representation of C522Q8 in GL4(𝔽41) generated by

1000
0100
003440
0010
,
64000
1000
0010
0001
,
21300
283900
0010
003440
,
182100
62300
0010
0001
G:=sub<GL(4,GF(41))| [1,0,0,0,0,1,0,0,0,0,34,1,0,0,40,0],[6,1,0,0,40,0,0,0,0,0,1,0,0,0,0,1],[2,28,0,0,13,39,0,0,0,0,1,34,0,0,0,40],[18,6,0,0,21,23,0,0,0,0,1,0,0,0,0,1] >;

C522Q8 in GAP, Magma, Sage, TeX

C_5^2\rtimes_2Q_8
% in TeX

G:=Group("C5^2:2Q8");
// GroupNames label

G:=SmallGroup(200,26);
// by ID

G=gap.SmallGroup(200,26);
# by ID

G:=PCGroup([5,-2,-2,-2,-5,-5,20,61,26,328,4004]);
// Polycyclic

G:=Group<a,b,c,d|a^5=b^5=c^4=1,d^2=c^2,a*b=b*a,c*a*c^-1=a^-1,a*d=d*a,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations

Export

Subgroup lattice of C522Q8 in TeX
Character table of C522Q8 in TeX

׿
×
𝔽